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Abstract

This report investigate the effects of atmospheric turbulence on the performance of air-
borne radars. The suitability of parabolic equation models for this application is in-
vestigated. We demonstrate that if the turbulent processes are assumed to be quasi-
homogeneous and Gaussian, the most commonly used spectra lead to very weak refractive
index gradients for individual realisations, even in strong turbulence, and that split-step
parabolic equation models are adequate at the frequencies of interest.

Parabolic equation solutions for the moments of the field are derived in a particularly
simple fashion which avoids the use of stochastic integrals, under the Markov approxima-
tion. Since the moment equations are more expensive computationally than Monte-Carlo
simulations, which have the added advantage of not requiring the Markov approximation,
we conclude that the Monte-Carlo option is the best one for this work. Monte-Carlo
parabolic equation simulations involve the generation of random phase-screens to repre-
sent the integrated refractive index fluctuations over a range step. Correlation functions
for the integrated fluctuations are given, both in the general case and under the Markov
approximation.

The parabolic equation model available at the Radio Communications Research Unit in-
cludes advanced features like accurate treatment of the air/ground interface. This has
been used to compute results for generic helicopter and AWACS examples, with both von
Karman and Gaussian turbulence spectra. Results indicate that the turbulent layers may
enhance or mitigate radar holes depending on the autocorrelation function of the refrac-
tive index. However these effects remain small even in strong turbulence unless we assume
very strong range correlation. The most striking effects are obtained for frozen-in-range
turbulence.
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1 Introduction

Clear air effects such as ducting and turbulence greatly affect the performance of airborne
radars [8]. Very little is known at present on the potential for mitigation of propagation
effects by optimising platform stationing, for example when multiple AWACS are required
to form an Air Defense Net. In particular it is not known whether atmospheric turbulence
enhances or mitigates radar holes caused by atmospheric layering. Although some work
has been carried out on this topic for ground-based sensors [8, 6], very little information
is available so far on the airborne case, mainly because of the high computational burden
associated with it. Here we use parabolic equation (PE) techniques [11] to model propa-
gation in a stochastic medium, using phase-screen techniques along the lines of [22]. We
note here that numerical phase-screen methods are widely used in atmospheric acoustics
(see for example [2] and optics [20].

The parabolic equation framework can only be used if the propagation medium is smoothly
varying on the scale of a wavelength. Hence it is crucial to check whether the irregular-
ities caused by the random fluctuations of the atmospheric refractive index can violate
smoothness constraints. We first give general results on stochastic processes in section 2.
These are then applied to atmospheric refractive index fluctuations in section 3.

In section 4, we look at the PE solution for a single realisation of the field. This requires
the generation of appropriate phase-screens representing the refractive index fluctuations
integrated over a range step, a topic which is addressed in section 5. The solution for a
single realisation is the building block for Monte-Carlo simulations, which can be used to
compute the statistics of the field. Alternatively, it is possible to derive equations for the
moments of the field under the Markov approximation. As this option provides results
in closed form for propagation in a homogeneous medium, it has been favoured by many
authors. We give a particularly simple derivation of the moment equations based on the
split-step formulation of the PE solution in section 6.

In section 7, we look at turbulence effects on airborne antennas. We have selected a case
study involving a 10 GHz source located at an altitude of 1500 m, corresponding to a
generic helicopter radar, and a case study involving a 3 GHz source located at an altitude
of 9000 m, corresponding to a generic AWACS radar. Finally section 8 gives conclusions
and ideas for future work.

2 Regularity of Gaussian processes

If a given realisation of the random medium is sufficiently smooth, it will be possible
to treat the problem for that particular realisation as propagation in a smoothly varying
medium and to describe it in terms of the Maxwell equations. For general random processes
there is no garantee at all that individual realisations (or sample paths) will be smooth. For
example the sample paths of Brownian motion are continuous and nowhere differentiable,




with probability one [3]. Fortunately, for special classes of random processes, smooth
paths are guaranteed by the existence of a sufficiently regular covariance function. We
use terminology and results from the book by Cramér and Leadbetter [3], which gives a
wealth of information on the regularity of sample paths.

We shall need a few definitions concerning random processes. In this section we consider
real processes only.

A random process X (r,w) is strictly homogeneous if all joint distributions of variables
of the form (X (r; +r),...,Xn(rny +r) are independent of r.

A random process X (r,w) is Gaussian if all joint distributions of variables of the form
(X(r1),...,Xn(ry are Gaussian.

If X is a real centred Gaussian process, then X is strictly stationary if and only if its

covariance (or correlation) function) B defined by

B(r) = (X(r1)X(r1 + 1)) 1)

does not depend of r;, where the angle brackets denote expectation in the probability
space. Then X is entirely defined by its covariance function.

Frow now on we assume the covariance function is continuous. Then X has a spectral
representation of the form

X(r,w) = /R . eXr /3 (K)dW (K, w) (2)

where the stochastic integral is defined as a Fourier-Stiljes integral, W is a Wiener process
and the power spectral density ® is defined by

(K) = (2—717)5 /}R . B(r)e KT dr (3)

This is the Wiener-Khintchine theorem (3, 9].

The following theorem, which follows from results in [3] summarises some sufficient con-
ditions for sample paths to be well-behaved with probability one.

Theorem 1 If the covariance function has second order partial derivatives at zero, then
with probability one the sample paths have continuous partial derivatives. More generally
if for some positive integer p the covariance function has partial derivatives up to order 2p




at zero, then the sample paths are continuously differentuable up to order p with probability
one.

Since the covariance function is the inverse Fourier transform of the spectral density, condi-
tions for regularity of the sample paths can also be written in terms of the spectral density:
for example the covariance function is twice-differentiable if and only if the spectral density
satisfies

/RS IK|*®(K)dK < oo (4)

As a result, we have the following theorem giving sufficient conditions on the spectrum
for the sample paths to be regular with probability one.

Theorem 2 If for some positive integer p the spectral density satisfies
/ |K|*®(K)dK < oo (5)
R3
then the sample paths are continuously differentiable up to order p.

If follows that if the spectrum is well-behaved, the sample paths are very regular with
probability one. This is already rather good news: provided the spectrum has good
integrability properties, individual realisations of the refractive index fluctuations will be
regular with probability one, which means we can treat each realisation of the random
propagation medium as a smoothly varying medium.

Now in order to apply the parabolic approximation to Maxwell’s equations, we shall need
bounds on the refractive index slopes. It turns out that bounds can be obtained in terms
of the spectrum [3]. Assume that the process X has continuous sample paths in the spatial
domain D given by 0 < z < a,0 <y <b,0 < 2z < ¢. Then for a given threshold u, we look
at the random variable

" abe

1
Vo= —/Dl|X(r)|>udr (6)

which is the proportional volume of the domain where | X| exceeds u. Then the expectation
of V,, is given by

<Vu> = erfc <—m) (7)

where the complementary error function erfc is defined by




exfe(s) = % / " (8)

It follows from equation 7 that if the variance of the process is small, |X| will remain
small in a large proportion of the domain. We can apply equation 7 to the derivatives of
a random process to obtain estimates on the gradients of the sample paths. In the next
section we carry this out for the most commonly used refractive index spectra in order to
see whether the parabolic approximation is applicable.

3 Stochastic properties of the refractive index

We assume here that the propagation phenomena of interest happen in a very short time
compared to the temporal fluctuations scales of the medium, and we treat the medium as
frozen in time. For a more detailed analysis of the radar echoes produced by a moving
target at a moving platform, it would certainly be necessary to include time fluctuations
in the modelling.

For a spatial point r = (,y,2) and a point w in the probability space, we write the
atmospheric refractive index n(r,w) as

n(r,w) =1+ ng(r) + ng(r,w) (9)

where ny is a centred random variable representing the fluctuations of the refractive index.
The quantity ng represents the deterministic spatial variations of the medium.

In all that follows, we assume that the refractive index can be modelled as a Gaussian
random process. This assumption may not always be realistic [16], but there is currently
no real alternative in the absence of sufficiently resolved computational fluid dynamics
models. Hybrid models extending large eddy simulations to subgrid scales have recently
been introduced [6, 21], but computational requirements are still prohibitive for the very
large domains required for our application.

We first look at the von Karman approximation of the Kolmogorov spectrum, which
describes isotropic locally homogeneous turbulence in the inertial subrange, before moving
to Gaussian spectra, which allow us to study non-isotropic effects, still under homegeneity
assumptions. Finally we briefly describe the quasi-homogeneous model, which is necessary
if we wish to include spatial variations of the intensity of the turbulence.




3.1 The von Karman spectrum

The von Karman spectrum is given by

B(K) = 0.033C2(K? + Ly?) /O exp(—~K?/K2) (10)
where
K = 222 (1)
lo

and C,, is the structure constant, which is a measure of the strength of the turbulence. The
inner scale lp is the eddy size below which turbulent energy is assumed to dissipate into
heat. It is usually taken to be of the order of a millimetre. The outer scale Lo gives the
maximum size for eddies contributing to locally homogeneous turbulence, and is usually
taken to be of the order of 10 metres. In the inertial subrange lp < K < Ly, the von
Karman spectrum is a good approximation to the Kolmogorov spectrum which describes
atmospheric turbulence assuming local homogeneity.

We first note that for any positive integer p, the von Karman spectrum satisfies

|K|?®(K)dK < oo (12)
R3

Hence from theorem 2, the sample paths are indefinitely differentiable with probability
1, and we can use Maxwell’s equations for a smoothly varying medium. In order to see
if the parabolic approximation is valid in the turbulent atmosphere, we need to estimate
the refractive index gradients. The crucial parameters are the variances o2, aﬁ,af of the
partial derivatives of ny. We have




+ - (%)
<hm (nf(:z: + h,y,z,h) —ng(z,y, Z)>2>
h—0

(st Ry, 2) = s, 2) | (13)
- ;1336<( h ) >

= hm — (B(O 0,0) — B(z,0,0))

8’°B

~522(0,0,0)

From the Wiener-Khintchine representation, we can write

2
9 f(o 0,0) / K23(K)dK (14)
oz RS

We note that for an isotropic spectrum, all the partial derivatives have the same variance
o?%. For the von Karman spectrum, we obtain after some algebra

02 = ——— x 0.033C2 K%/* / zv—l/?’e_”zp(3/2,2/3,v)dv (15)
Ly

r(3)

where 1 is the confluent hypergeometric function or Kummer function [1]. We get a bound
on ¢ by writing

o0 pOO
a? < 0.0337rC§Kfn/3/ / v B M2 (1 + u) ST du dy
0 JO

IA

o0 lo o]
0.033 7 C2 Kfn/?’/ / v 1Be™?(1 + u)~dudv
° (16)

= 3T(2/3) x 0.0337 C2K2/3

= 45602153




Hence the variance of the refractive index gradient increases with the strength of the
turbulence and with the inverse of the inner scale lp: the presence of significant energy in
small eddies tends to make the refractive index profiles more irregular.

It follows from equation 7 that on average the partial derivatives of the refractive index
have a modulus greater than 10c¢ in a proportion of less than 1.524 x 10723 of the volume
of interest, small enough to be neglected. If we take lp = 1073 m, and C, = 107 m~Y/ 3
a value typical of strong turbulence, we have

0<214x10%m™! (17)

Hence on average, we can assume that the partial derivatives of the refractive index have
a modulus less than 2.14 x 10~*m™! in all but a negligible proportion of the domain of
interest. For radar frequencies of interest, wavelengths range from a few millimetres to a
few metres and these gradients remain small on the scale of a wavelength. We conclude
that the parabolic approximation is valid even in extremely strong atmospheric turbulence.

Since the quantity accessible to measurements is the variance of the refractive index fluc-
tuations, it is useful to find a relationship between (n?,) and C2. For the von Karman

spectrum, the variance of the refractive index fluctuations is linked to the structure con-
stant C2 by [9]

(n2) = 0.52C2LY" (18)

Table 1 gives typical values for weak, medium and strong atmospheric turbulence, taking
Lo =10 m.

Table 1: Structure constant and standard deviation of refractive index fluctuations

c? NG

weak turbulence 1078 m=2/3 | 1.55 x 1079

medium turbulence | 10~ m=2/3 | 1.55 x 108

strong turbulence | 107¥m~2/3 | 1.55 x 1077

We see that turbulence would have to be exceptionally strong for the refractive index
standard deviation to reach values of 10—6, and the refractivity fluctuations tend to remain
less than a fraction of an N-unit.




3.2 The Gaussian spectrum

For theoretical studies, it is often very convenient to use a Gaussian correlation function
of the form

$2 2 22
Bula2) = flhemw (-5 - 4 - (19)

Here the process is not isotropic, since the correlation lengths L, Ly, L, are not necessarily
equal. The correlation function is infinitely differentiable, and hence so are the sample
paths with probability one. The variances of the refractive index partial derivatives are
given by

V2 s

US:L—S <nf>7 $=,Y,2 (20)

Typical values of (n%) in very strong turbulence would be at most of the order of 1075,

giving o, of the order of v/2 x 107%/L,. Even for very strongly correlated turbulence, for
example taking Lg = 1 cm, the variances of the refractive index gradients are still of the
order of 1074 m™! and the parabolic approximation is valid for the frequencies of interest.

3.3 Quasi-homogeneity

In general, the variance of the refractive index fluctuations is a function of space, and the
turbulence process is not homogeneous, nor even locally homogeneous. Following [10, 19],
we use a weighted homogeneous model for the random refractive index, writing

nf(r,w) = 1/ (n}(r)) X (r,w) (21)

where the process X is homogeneous.

We note here that although there are turbulence models for the boundary layer [7], very
little is known about turbulent structures in the free atmosphere. In particular there is
much speculation about the so-called ” collapse problem” of 3D turbulence, and it has been
postulated that turbulent eddies in a stably stratified atmosphere might well be pancake-
shaped, with correlation lengths much larger in the horizontal than in the vertical [12]. We
shall see later that non-isotropy may have important consequences for radar propagation.

The problem of deriving vertical profiles for the variations of \/ (n%(m + Az/2,z)) in the
free atmosphere is linked to this description in terms thin turbulent layers ations. The




VanZandt model [25], which computes an average C? profile from radiosonde ascent data,
could prove extremely useful in that respect. We note however that this would not address
the problem of horizontal correlation.

4 PE solution for one realisation

It follows from the previous section that realisations of the refractive index fluctuations are
sufficiently regular to justify the use of the parabolic approximation. In fact, the variations
of the refractive index are sufficiently slow on the scale of a wavelength to justify the use
of the split-step solution of the narrow-angle parabolic equation [11]. One caveat is that
our application can involve relatively large heights relative to the Earth surface. Accurate
modelling requires a conformal Earth flattening transformation with a modified refractive
index [11] defined by

m(z, z) = n(z, z) exp (z/a) (22)

where a is the Earth radius, = corresponds to the ground range and z = alog(1l + h/a) is
a logarithmic function of the height h above the Earth surface.

Let u(z, 2) be the reduced PE field. Assume first that there is no air/ground interface at
the bottom of the domain. Then the split-step solution is given by

u(z + Az, z) = exp (%E /mHAm(nz(é,z) — 1)d§)

00
% / ’U,(IIJ, z/)eik(z—z')2/2A:zzdzl

—00

The convolution integral is calculated numerically with a Fast Fourier Transform. In the
presence of the air/ground interface, boundary conditions are enforced by replacing the
convolution integral with a more complicated expression, which is implemented numeri-
cally with a sine transform or mixed transform [5]. We then have a solution of the form

i T+Az
u(z + Az, 2) = exp (Ek / (n%(¢,z) — 1)d§> F(u(z,-)) (24)

where F depends only on the field at previous ranges. The main point to bear in mind is
that refractive index variations on the interval [z, z+ Az] only intervene in the exponential
factor.




In order to solve the split-step equation, we have to generate a realisation of the integrated
random fluctuations of the refractive index over the range interval [z, z + Az]. Since n is
close to unity, we make the approximation

1
~ng+nf (25)

We note that since we are neglecting propagation effects in the transverse direction y, we
only require the behaviour of the correlation function for points with the same value of y.
The random process of interest then represents the integrated phase fluctuations

T+Azx
v(z,z) = / ny(€,0,2) d¢ (26)

We now look at the autocorrelation function of the process v(, z, z).

5 Computing B,

If n; is homogeneous, the autocorrelation function B, of v is given by

Az Az
By(z,2) = / / Bo(z + 23 — 1, y, 2)dardas (27)
0 0

Making the change of variable s = z9 — #1,t = z;, we obtain

Az
B,(z,2) = /0 (Az — s)(Bp(z + 8,0,2) + Bp(z — s,0,2))ds (28)

In particular this yields for = 0

Az Az

B,(0,2) = Am/ Bn(s,0, 2)ds ——/ |s|Bn(s,0, 2)ds (29)

—Az —A

and for any positive integer j, the inequality

e o]

Az
B,(jAz,0,2) < Am/ By (s,0,2)ds —I—/ sB,((j — 1)Az + 5,0, 2))ds (30)
0

Az

10




5.1 Uncorrelated phase-screens

Suppose that we have

00 Az
/ B (s,0,2)ds < / By (s,0, z)ds (31)
Az 0
and
Az Az
/ sBr(s,0,2)ds <« A.T/ By(s,0, z)ds (32)
0 0

Then we can make the approximations

(e o]
B,(0,2) ~ A:z:/ B (s,0,2)ds (33)
and
B,(jAz,z) ~ 0 (34)

when j is a positive integer. Equation 34 means that the phase screens are approximately
uncorrelated, while Equation 33 is simply a convenient approximation which is consistent
with Equation 34. Equation 34 is a form of the Markov approximation (see section 6
below).

Approximations 33 and 34 are good when the range step Az is much larger than the range
correlation length L., which is often the case in practice. For example with the Gaussian

correlation function given by equation 19, using a first order asymptotic expansion for the
complementary error function (1], we obtain if L, < Az

B,(0,2) ~ (VwLyAz — L2) exp(—2*/L2) (35)

for the correlation between points at the same range, while the correlation between suc-
cessive screens satisfies

2
BB, 2) ~ 2 exp(~2*/I2) (36)

11




Since we have

B,(Az, z) < B,(0,2) (37)

it is tempting to assume that the screens are uncorrelated. We can then take

B,(0,2) ~ LAz exp(—2%/L2) (38)

If we neglect the correlation between the screens, the relative error on the correlation
function is of the order of L;/Az at each step. Typical values of Az/L; are of the
order of 10 to 100, and the relative error on the correlation function of the phase screens
at each step will range from 1% to 10%. This could clearly lead to large cumulative
errors for simulations requiring hundreds of steps, which is the case for the airborne radar
application.

The error analysis performed in [22, 23] shows the effect of the range step on accuracy
of the moments of the field when the phase screens are modelled with the appropriate
range correlation, assuming the range step is less than the correlation length. The work of
Rouseff shows that excellent results are achieved for independent phase screens when the
range step is much larger than the correlation length, at least at relatively short ranges.
However these publications do not address the issue of cumulative error at very large
ranges, and in particular the effect of the Markov approximation. The work of Dashen [4]
indicates that the Markov approximation is likely to be inaccurate for non-homogeneous
media.

5.2 Correlated phase-screens

If we do not make the approximation that the phase screens are uncorrelated, we can
generate accurate realisations of the phase screens by writing the correlation function as

T+Az

T

f(s)ds — (z — Aac)/ f(s)ds

B,(z,z) = (z + Az)
/ z—Ax (39)

T

+ Lw sf(s)ds — /:+Am sf(s)ds

—Azx

where f(s) = Byn(s,0, z). Differentiating twice with respect to x, we get

12




8°B,
Oz2

(z,2) = f(z + Az) + f(z — Az) — 2f(z) (40)
Using the Fourier transform theorems for derivatives, we obtain

® 4sin?(K,Az)/2 ; o ;
By(z,2) = / —%@Z—emﬂ / Bu(s,0, 2)e"K=5ds dK, (41)
—00 T —00

This takes a particularly simple form when the correlation function B, is Gaussian: the
spectrum ¢, is then given by

i 02
@, (K, K.) = L, 1, 2B —canzwzizya )
T

5.3 Frozen-in-range turbulence

In the extreme case where the turbulence depends on height only, the phase-screens do
not depend on range and we have

By(z,2) = (Az)*Ba(0,0, 2) (43)

For this case, it is sufficient to generate one height-dependent phase screen which is kept
constant throughout the marching procedure, using the normalisation of equation 43

5.4 Quasi-homogeneity

If ns is only quasi-homogeneous, but exhibits slow variations of the variance with range, it
is straightforward to extend these results by noting that the integrated phase fluctuations
are approximately quasi-homogeneous, with

T+AT
v(w,2) ~/(n}(@ + Az/2,2)) L " x(6,0,2)d (44)

We can then generate realisations of v as follows: we first obtain realisations of the homo-
geneous process Y = [ ; AT x (&,0, 2)d¢ using the Wiener-Khintchine spectral representa-

tion, and then multiply by the refractive index standard deviation \/ (n?(m + Az/2,2)).

13




5.5 Numerical implementation

The Monte-Carlo approach requires a very good random number generator, since very large
numbers of calls are required. Here we have used the random generator of L'Ecuyer [18]
with period 2.3 x 10'®, which provides random numbers sequences of excellent statistical
quality for lengths up to 107 or so. Even for very large AWACS simulations with a
vertical FFT size of 65536 and 1000 range steps, the total number of calls for a set of
250 simulations is of the order of 10°, which is far below the reliability theshold of the
L’Ecuyer generator.

It is straightforward to generate independent phase-screens with the appropriate height
correlation, using a discrete version of the Wiener-Khintchine spectral representation [13].
Things become more difficult however if we wish to model range correlation. The spectral
approach then requires a large two-dimensional FFT, since accurate representation of the
spectrum requires a spatial step size which is small compared to the correlation length of
the medium. For this reason most authors assume independence of the phase-screens.

6 Moment equations

For many years, researchers have attempted to derive and solve partial differential equa-
tions for the moments of the fields. This is only possible under the Markov approximation,
which assumes that the field at range = + Az does not depend on refractive index fluctu-
ations at ranges less than z. It has been shown in [4] that this is an excellent assumption
when the turbulence is homogeneous and isotropic, with a a scale size small compared
to the range step. The moment equations have been derived by Tatarski [24] for the
case of a homogeneous isotropic medium which is delta-correlated in range, and by Man-
dine [14] under slightly more general assumptions using the stochastic integral formalism.
Here we derive them directly from the split-step parabolic equation under the Markov
approximation.

The Markov approximation can be stated as follows: we assume that for any range z, any
distinct integers 71, jo and any heights 21, 22, the random variable v(z + j1Az, z1) which
represents the integrated fluctuations of the refractive index at height z; between ranges
z + j1Az and = + (j1 + 1)Az is independent of v(z + joAz,22). Then we can revisit
equation 24 to compute the successive moments of the field. Using approximation 25
together with the Markov approximation, we have for the first moment

<u(m + A:c,z)) — eikA:md(z+A:z/2,z) <eik1/(z,z)> (F(U(IE, ))) (45)

Since the refractive index process is Gaussian, we have

14




<eiku(z,z)> — e—k2 <u2(m,z)> /2 . (46)

For a quasi-homogeneous process with slow variations in range, this becomes approxi-
mately

< eiku(m,z)> — (n%(s+02/2,2)) Bx (0,2)/2 (47)

Since F' is linear, we also have

(F(u(z, ")) = F({u(z,))) (48)

Putting M;(z, z) = (u(z, 2)), and Ag(z,z) = (v*(z,2)), we see that the first moment M;
satisfies

Mi(z + Az, 2) = kAT ng(z+AT/2,2) e—k2Ao(w,z)/2F(M1(m7 ) (49)

This directly provides a marching solution for the first moment. We see that the effect of
turbulence on the first moment is to absorb some of the energy of the field with a height
and range dependent absorptive term.

Equations for higher moments are obtained in a similar way from the split-step solution of

the parabolic equation together with the Markov approximation. For example the second
moment equation is of the form

M2($ + Az, 21,22) — eikAa:[nd(z+Aa:/2,z1)—nd(a:+A:c/2,zz)]
(50)

e—kQAz(m,21,22)/2G(M2($, . _))

where

My(z, 2) = (u(z + Az, 21)u(z + Az, 22))

As(z, 21, 22) = {(W(z, 21) — v(, 22))%)
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The linear functional G' depends on boundary conditions at the ground. For example if
there is no ground interface, we have

Gf(z,21,2) = / g(, 2, 25)eMlE =) ~Ga=n)) /202 1 ) (51)
R2

A few comments are in order at this stage. We first note that the first moment equation
is computationally equivalent to the PE for a single realisation, with only a very small
overhead for the computation of the absorptive exponential term. The first moment is
however of little use when examining the effects of turbulence on radar or communications
systems: the main effects arise from the fluctuations of the field. These give rise to
scintillation phenomena which degrade target tracking or signal reception. The second
moment gives information on the mutual coherence of the field, while the fourth moment
gives information on the intensity fluctuations of the field, and those are the more relevant
quantities to study.

Now the fourth moment equation involves four independent height variables and cannot
be handled numerically except for very small problems. Approximations can be made
to obtain more tractable equations [9, 13], but very few numerical results are available.
The second moment equation involves two independent height variables and its numerical
solution requires two-dimensional FFTs. Although this approach is not out of the question,
we notice that it is not actually cheaper than the Monte-Carlo approach: Rouseff [19]
obtained reliable second and fourth moment estimates with 250 simulations. Now if the
vertical FFT size is greater than 256, this is a cheaper way to obtain the second moment
than solving the second moment equation, and of course vertical FFT sizes for airborne
problems are orders of magnitudes larger than 256. If we consider that the Monte Carlo
approach does not require the Markov approximation, and will yield good estimates of
both the second and the fourth order moments, we may conclude that the Monte-Carlo
approach is both more efficient and more accurate than the moment equations.

7 Application to airborne sensors

7.1 10 GHz example

In this section, we look at a generic helicopter case, with a 10 GHz horizontally polarised
source at an altitude of 1500 m. The beamshape of the antenna is Gaussian, with a half-
power beamwidth of 1° and an elevation of —0.15°. The parabolic equation simulations
for this case use a range step of 250 m, a height step of 25 cm and a sine transform size
of 16384. Figures 1 and 2 show the antenna coverage in standard conditions (exponential
atmosphere) and when an elevated duct is present. The modified refractive index profile
for the duct is given in Table 2: the ducting layer is located between 500 and 600 m.
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Table 2: Elevated duct profile for 10 GHz simulations

Height | Modified refractivity
(m) (M-units)
0 330
500 390
600 380
1600 498

Height, m

1-way
path loss

1600- @)
14001 | 140
1200 150
10001 - 160
8004 170
6004 - 180
4004
200

o caill—

0 100 120 140 160 180 200 220 240

Range, km

Figure 1: Airborne X-band antenna in standard atmosphere.

The parabolic equation simulations use the discrete mixed transform of [5] to model im-
pedance boundary conditions at the ground, together with a ray-trace algorithm to find
a representative grazing angle at each range. With this model, we can take roughness
effects into account. Here we assume propagation over a rough sea surface, using the
Miller model [15] to compute the effective reflection coefficient and the Phillips isotropic
sea surface spectrum [17] which gives the rms waveheight as a function of wind speed.
The wind speed is 10 m/s, corresponding to average roughness conditions. The rms wave
height for this wind speed is 0.51 m. The roughness inhibits lobing, except at the shallower
grazing angles. When the duct is present, a very marked radar hole appears as expected.
Figure 3 shows path loss again against height at a range of 250 km for the two refractivity
environments. The signal is enhanced close to the surface and just above the duct due
to partial trapping of the reflected energy and to scattering from the duct, and there is a
substantial decrease in the radar hole, where the signal is 10 to 15 dB below its standard
value.
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Height, m

1-way
path loss

80 100 120 140 160 180 200 220 240
Range, km

Figure 2: Airborne X-band antenna in elevated duct of Table 2.

Vertical path

Height, m
2000

1800
16004
1400
12004
10004
8004
6004
4004
2004

0
300 280 260 240 220 200 180 160 140
1-w ay path loss (dB}

standard atmosphere duct

Figure 3: Comparison of X-band signal at range 250 km in standard atmosphere and
elevated duct.
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We now look at turbulence effects on the radar hole. The random profile generator can deal
with arbitrary variations of the refractive index variance, which means there is considerable

flexibility for the simulations. Here we show results for the /(n%) profile of Table 3, which
exhibits stronger turbulence inside the layer, and for a constant profile with (n%) =

0.5 x 1076, Naturally these values correspond to extremely strong turbulence which may
not occur in reality. Linear interpolation is used to compute the turbulence profile between
the data points.

Table 3: Turbulence profile for 10 GHz simulations

Height \/ (n%)
(m) | (N-units)
0 0.1
500 0.1
550 0.5
600 0.1
1600 0.1

Figures 4 and 5 show path loss contours respectively for the turbulence profile of Table 3
and for uniform very strong turbulence. For both of these simulations, the von Karman
spectrum has been used to generate the random refractive index structure, with the outer
scale Lg set to 10 m. Here we assume independent phase-screens.

Although the variable turbulence profile does increase the variability of the field at short
ranges, we have to go the the very strong uniform turbulence to see effects at longer ranges.
This is confirmed by Figure 6, which shows increased fluctuations in the radar hole for the
uniform turbulence case. Even with this very strong turbulence environment, the effects
are relatively small. We also see increased scatter close to the surface. In view of the very
weak signal strength values, this is unlikely to have operational significance.

We now consider a Gaussian correlation function in order to look at the effects of the hor-
izontal correlation length. For the simulations that follow, the turbulence is uniform, with
,/(nfc) = 0.5 x 1076. Figures 7, 8 and 9 correspond respectively to isotropic turbulence
(Ly = L, = 10 m), non-isotropic turbulence (L, = 100 m, L, = 10 m), and frozen-in-
range turbulence (L, = 0o, L, = 10 m), where the random fluctuations depend on height
only. For the non-isotropic case, the ratio L;/Az is equal to 0.4, and the assumption of
independent phase screens is acceptable. For the frozen-in-range case, we keep the same
phase-screen throughout, using the results of section 5.3.

Results for the isotropic Gaussian spectrum are very similar to those for the von Kar-
man spectrum, but there are considerables changes as the horizontal correlation length
increases. Then as the irregularities in the refractive index profile persist in range, they
give rise to multiple thin ducting layers which can have long-range effects. This becomes
particularly striking for the frozen-in-range case. Figure 10 shows path loss against height
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Height, m

1-way
path loss

100 120 140 160 180 200 220 240
Range, km

Figure 4: Airborne X-band antenna in elevated duct, von Karman spectrum with turbu-
lence profile of Table 3.

Height, m
2000.
18004 1-way
path loss
16004 (dB)

1400
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12004 150
10004 . 160
8004 170
600 - 180
4004
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0 |
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Figure 5: Airborne X-band antenna in elevated duct, von Karman spectrum with uniform
turbulence, 1/(n?,) =0.5x 107%, Ly =10 m.
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Height, m
2000

18004

16004
1400+
1200
1000

800

600
400+
2004

0 T

] ] T
260 250 240 2:130 220 210 200 19'J0 18'50 170 160 150
1-way path loss (dB)

variable turbulence uniform turbulence no turbulence

Figure 6: Comparison of X-band signal at range 250 km in elevated duct with variable
and uniform turbulence (von Karman spectrum, turbulence profile of Table 4) and without
turbulence.

at a range of 250 km for the frozen-in-range case, the non-isotropic turbulence case and
the reference ducting environment without turbulence. Fluctuations are much more severe
here than in the isotropic case, reaching values well over 10 dB. The frozen-in-range case
also leads to much increased signal values close to the ground. It is interesting to note that
for this case the non-isotropic turbulence actually strengthens the radar hole at heights
between 800 and 1000 m or so.

7.2 AWACS example

We now consider a 3 GHz horizontally polarised source at an altitude of 9000 m. The
beamshape of the antenna is Gaussian, with a half-power beamwidth of 3° and an elevation
of —0.25°. The parabolic equation simulations for this case use a range step of 500 m,
a height step of 30 cm and a sine transform size of 65536. Figures 11 and 12 show the
antenna coverage in standard conditions (exponential atmosphere) and with the elevated
duct environment given in Table 4. This is a very strong ducting layer with an M-deficit
of 20 M-units, located between altitudes of 1500 and 1600 m. When the duct is present,
a radar hole opens at a range of 300 km or so.

Here we have used the same rough surface model as in the previous section, with a wind

speed of 10 m/s at the shallower grazing angles. We note that the surface roughness does
not inhibit high altitude lobing at this frequency. We can look at the effects in more detail
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1600 ¢
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10004
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Figure 7: Airborne X-band antenna in elevated duct, isotropic Gaussian spectrum, L, =
L, =10 m.

Height, m

2000

1800-

16004 44

14004
12004
10004
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1-way
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0
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Range, km

Figure 8: Airborne X-band antenna in elevated duct, non-isotropic Gaussian spectrum,
Ly =100 m, L, = 10 m.
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2000.

1800
1600
14004
1200
1000+
8004
600
4004
2004
0.

0

100 120 140 160
Range, km

180 200 220 240

1-way
path loss
(dB)

Figure 9: Airborne X-band antenna in elevated duct, frozen in range turbulence, Gaussian

spectrum, L, = 10 m.

Height, m
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Vertical path

1800
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Figure 10: Comparison of X-band signal at range 250 km in elevated duct with frozen in
range and non-isotropic turbulence (Gaussian, turbulence profile of Table 4) and without

turbulence.
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Table 4: Elevated duct profile for AWACS simulations.

Height | Modified refractivity
(m) (M-units)
0 325
1500 500
1600 480
2600 598

Height, m
10000+

90004

1-way

path loss
80004

70004

60004
50004
4000-
3000-

2000+
1000

0+

Range, km

Figure 11: AWACS coverage in standard atmosphere.

in Figure 13, which shows path loss again against height at a range of 500 km for the
standard and ducting environments. The hole is quite pronounced, with a drop of almost
10 dB compared to the envelope of the signal in the standard case.

We now look at turbulence effects. Figure 14 shows the coverage in a turbulence at-
mosphere modelled with the von Karman spectrum. The turbulence is uniform, with the
extremely high value (n?) = 0.5 x 1078 for the refractive index fluctuations. This does
give rise to fluctuations in the signal, as shown in Figure 15, but the variability remains
small even in this very strong turbulence, and there is litlle impact on the radar hole. We
have to consider non-isotropic turbulence in order to see more substantial effects. Fig-
ures 16 and 17 show path loss contours respectively for a non-isotropic Gaussian spectrum
with Ly = 500 m and for the frozen-in-range case. For both simulations we have taken
L, = 10 m and (nfc) = 0.5 x 1075. Turbulence effects then become very severe, with
numerous small ducting layers partially destroying the coherence of the overall elevated
duct trapping.
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Figure 12: AWACS coverage in elevated duct of Table 3.

Vertical path

Height, m
10000.

90004
80004
70004
6000-
50004
4000+
30004
20004
1000-

04
270 260 250 240 230 220 210 200 190 180 170 160 150
1-way path loss (dB)

standard atmosphere elevated duct

Figure 13: Comparison of AWACS signal at range 500 km in standard atmosphere and
elevated duct.
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1-way
path loss

Range, km

Figure 14: AWACS coverage, von Karman spectrum with (n?) =0.5%x107% Ly =10 m.

Figures 18 and 19 show these effects in more detail at range 500 km. We note that even
in these very severe conditions, the radar hole is still quite effective, although both the
spatial extent and the signal drop have been reduced.

8 Conclusions and future work

We have demonstrated in this report that parabolic equation models are adequate for
simulations of radar propagation in atmospheric turbulence. This has been achieved by
showing that if we assume the turbulent processes are quasi-homogeneous and Gaussian,
the most commonly used spectra lead to very weak refractive index gradients for individ-
ual realisations, even in strong turbulence. Under the Markov approximation, we have
derived parabolic equation solutions for the moments of the field in a particularly sim-
ple fashion which avoids the use of stochastic integrals. However beyond the first order,
which is of little interest for radar applications, the moment equations are more expensive
computationally than Monte-Carlo simulations, which have the added advantage of not
requiring the Markov approximation.

Monte-Carlo parabolic equation simulations involve the generation of random phase-
screens to represent the integrated refractive index fluctuations over a range step. Formulae
for the correlation functions for the integrated fluctuations have been given, both in the
general case and in the case where the phase-screens can be treated as uncorrelated in
range, corresponding to the Markov approximation.
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Figure 15: Comparison of AWACS signal at range 500 km, elevated duct environment,
with and without turbulence (von Karman spectrum, (n%) = 107°, Lo = 10 m).
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Figure 16: AWACS coverage in ducting environment, non-isotropic Gaussian spectrum,
(n?,) =0.5x107%, L, =500 m, L, = 10 m.
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Figure 17: AWACS coverage in ducting environment, frozen in range turbulence, Gaussian
spectrum, (n?c) =05%x1075 L, =10 m.
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Figure 18: Comparison of AWACS signal at range 500 km in elevated duct with non-
isotropic Gaussian turbulence and without turbulence.

28




|

Vertical path

Height, m
10000.

90004
80004

7000
6000
5000+
40004
30004
2000-
10004

0-

| . _
250 240 230 220 210 200 190
1-way path loss (dB)

strong frozen in range turbulence no turbulence
Figure 19: Comparison of AWACS signal at range 500 km in elevated duct with frozen in
range Gaussian turbulence and without turbulence.

The PE model available at RCRU, which includes accurate treatment of the air/ground in-
terface, has been used to compute results for generic helicopter and AWACS examples. We
have used von Karman and Gaussian turbulence spectra in order to investigate the effect
on non-isotropic turbulence. The case studies presented here indicate that the turbulent
layers may enhance or mitigate radar holes depending on the autocorrelation function of
the refractive index. These effects remain relatively small with the simulated refractivity
and turbulence profiles used here, unless we assume very strong range correlation. The
most striking effects are obtained for frozen-in-range turbulence, a phenomenon that was
already been noticed in [6].

Several topics merit further investigation.

e The most important issue is the specification of the atmospheric environment: in-
formation on the interaction of turbulent activity with elevated duct formation is
sparse, and a detailed survey on the current experimental and theoretical aspects
of this problem would be most useful. In particular the question of non-isotropy,
or of 3D turbulence collapse, is of crucial importance for operational consequences
on AWACS missions. It is also essential to obtain high altitude measurements of
the intensity of the refractive index fluctuations, since these are needed for input to
numerical models.

¢ The examples shown here consist of individual realisations. These already give much
insight into turbulence effects, but statistical results would be more significant. It
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is also clear that time-dependent modelling is required in order to look at target
detection and tracking when both platforms are moving.

e A detailed investigation of the accuracy of the Markov approximation for long-range
simulations would be helpful. This would require some work on the generation of
range-correlated phase-screens, which is a major computational problem.
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